Jellyland

Machine Learning Notes 03

 

Multivariate Linear Regression

\( X=\begin{bmatrix}x_{0}\ x_{1}\ .\ .\ .\ x_{n}\end{bmatrix}\in \mathbb{R}^{n+1} ;, \theta=\begin{bmatrix}\theta_{0}\ \theta_{1}\ .\ .\ .\ \theta_{n}\end{bmatrix}\in \mathbb{R}^{n+1}\)

  Also, \(h(\theta) = \theta ^{ T} X\)


Gradient descent

   Repeat{
      \(\theta_{j}:=\theta_{j}-\alpha\frac{1}{m}\sum_{i=1}^{n}(h_{\theta}(x^{(i)})-y^{(i)})x^{(i)}\)
   }


Feature Scaling


Learning Rate


Normal Equation —Solve for \(\theta\) analytically

The difference between Gradient Descent and Normal Equation:

#Machine Learning